稲田花崗岩の一軸引張割れ目の粗度計測

- レーザスキャンと写真測量を用いた比較-

藤井幸泰¹·高橋 学²·船戸明雄³

¹深田地質研究所 ²產業技術総合研究所 ³応用地質株式会社

Fracture roughness of uni-axial tensile fractures in Inada granite; a comparison between Laser Scanning and Photogrammetry

FUJII Yukiyasu¹, TAKAHASHI Manabu², and FUNATO Akio³

¹Fukada Geological Institute

²National Institute of Advanced Industrial Science and Technology

³OYO Corporation

要旨:稲田花崗岩の Rift, Grain, Hardway 面に平行に一軸引張割れ目を発生させ,破断面形 状の三次元計測をレーザおよび写真測量を用いて行った.計測値から破断面粗度を数値化す ると,レーザ・写真測量とも R→G→H の順に粗度が増すことが確認された.特に二乗平均 平方根や中心線平均粗さは,写真・レーザとも値がよく一致した.粗度計測の結果はほぼ同 程度の精度を示していたが,計測に要する時間,その他対象物への適用なども考慮し,レー ザと写真測量による計測手法の比較検討を行った.

キーワード:レーザスキャン,写真測量,破断面,粗度

1. はじめに

野外や室内実験で観察・形成される岩石表面 の形状には、岩石の破壊や風化の結果が表現さ れている.これら表面の形成メカニズムを明ら かにするためには、その形状を正確に把握する ことが重要である.特に岩石中の割れ目は、岩 盤のせん断強度に影響を与え、'水みち'として 岩盤の透水係数にも影響を与えるため、その表 面形状が多数計測されてきた.過去の計測方法 としては、触針式・写真測量・レーザスキャン などが適用されてきた.触針式の計測器は,破 断面に直接触れて測定する最も古典的な手法で あり,現在でもコンピューター制御の機器など が測定に用いられている(杉本ほか,1991;松 本ほか,1995;Develi et al.,2001;Sausse,2002; Amitrano and Schmittbuhl,2002).しかしながら 測定中に段差のある部分で停止するなど,いく つか問題点も抱えている.一方,写真測量やレ ーザ計測は,非接触(いわゆるリモートセンシ ング)という利点をもっている.試験片スケー ルで特に良く利用されるレーザ計測は,近年多 数の対象物に適用されている (Lanaro, 2000; Wu et al., 2000; Xie et al., 2001; Zhou and Xie, 2004). デジタル写真測量技術を用いた試験片スケール の計測も,数は少ないが行われている (Jessell et al., 1995;藤井ほか, 2006).またレーザ計測や 写真測量は試験片スケールのみならず,地形測 量などのマクロスケールにも積極的に活用され ている (三戸ほか, 2002; 西山ほか, 2004;村 井・近津, 2004).

実際に割れ目破断面などを測定する際,どの ような手法を用いるのが最適であろうか.また, 写真測量とレーザ計測を行った場合,それぞれ の結果にどのような違いが出るのか,このよう な比較検討を行った研究例は皆無である.今回 は稲田花崗岩の一軸引張試験後の破断面を対象 に,レーザと写真測量による計測を行った.両 者の計測方法の原理および実際の計測方法を踏 まえ,その結果を比較検討することを試みた.

2. 試料と試験方法

林ほか(2007)で行われた,稲田花崗岩の一 軸引張試験後の破断面を対象に計測を行った. 以下に稲田花崗岩と一軸引張試験について簡単 に説明を述べる.

稲田花崗岩の石目を考慮し, Rift 面, Grain 面, Hardway 面にそれぞれ垂直にコアリングを行っ て試料を採取した(図1).供試体は円柱で,直 径30mm,長さ60mmである.試験装置はMTS 社製のMTS-808材料試験システムを用いた.整 形を行った試験片の端面は,エポキシ系接着剤 を用いてエンドピースと固定した.固定の際, 試験片とエンドピースの軸を揃えるため,試験 片の片端面をエンドピースに接着して固化した 後,もう一方の端面を他方のエンドピースに, 十分注意を払って固定した.引張試験は室温

25°の一定の環境下で、6.0×10⁵ mm/sec の変位 速度で行った.また、ひずみはゲージ長さ10 mm の箔ひずみゲージを使用し、軸と周方向に対し て四箇所で測定した.実験は最終的に割れ目が 形成されるまで行い、それぞれの方向について 3試料ずつ行った. Rift 面に垂直な試料の名称 を R-1~3、Grain 面には G-1~3、Hardway 面に は H-1~3 とした (Rift 面に垂直な試料には、 Rift 面に平行な引張割れ目ができている). ひず みは軸と周方向とも、各試料の四箇所でほぼ均 一な値を示し、R 試料は 3.49~4.53 MPa、G 試 料は 6.61~7.19 MPa、H 試料は 7.85~8.24 MPa で最終破断をむかえた.実験終了後にそれぞれ の試料の割れ目破断面を露出し、計測の準備を 行った.

3. 計測方法

3.1 写真測量

写真測量は写真上で対象物(被写体)の計測 を行う技術である.1枚の写真からは2次元情 報しか得られないが、2枚1組の立体写真があ れば3次元情報を得ることができる. 立体写真 撮影時の左右カメラの位置と撮影方向の情報が あれば,対象物に関する両画像間の視差から対 象物の3次元座標を計算できる. しかしながら カメラの位置と方向を,写真撮影時に精密に測 定することは容易でない. そこで「標定点」と 称する既知のポイントを複数設定し,撮影時に 左右2枚の写真に対象物と共に写し込む. それ ら標定点の写真上での視差と実位置から,撮影 時のカメラの位置と方向が計算できる.

この研究ではあらかじめ試験片のスケールに あわせたフレーム (標定点が記してある)を作 成し, 化石などを撮影する接写台を用いて, 破 断面の立体写真をデジタルカメラで撮影した (図2,写真1)(藤井ほか,2006).カメラの焦 点距離(C)は約51 mm, CCD サイズは2/3イ ンチ(縦6.6 mm、横8.8 mm)で500万画素を 有する (2560×1920pixel, 分解能; δ_{CCD}=0.0034 mm). カメラステーションの距離(左右カメラ の間隔; B) は約60mmで,破断面からカメラ までの距離(H) は約300 mm である(図2). 立体写真測量における被写体平面方向の測量分 解能 (δ_{xv}) と,奥行き方向の測量分解能 (δ_z) は、 δ_{xy} =H/f δ_{CCD} 、 δ_z =H/B δ_{xy} 、で表される(村 井・近津, 2004). 図2に示す撮影状態では,破 断面に平行な方向でδ_{xy}=0.02 mm,破断面に垂 直方向で $\delta_{xy}=0.1 \text{ mm}$ 程度となる.

三次元計測ソフト上で標定点から左右カメラ 位置の計算を行うが、計算時の最小二乗法によ る残差は約 0.15mm 程度と、上述の奥行き分解 能(δ_z)にほぼ等しくなった. コンピューター 上で左右写真を撮影時の状態に復元した後、三 次元計測ソフトは左右写真上で自動的に同じ位 置を見つけだし、3次元ポイントを作成する. 3次元ポイント作成用の画像は 100 万画素 (1200×800pixel)に縮小することにより、約

図2 立体写真撮影図(藤井ほか,2006) Hは破断面からカメラまでの距離.Bは左右カメラ間の 距離.fはCCDサイズ,Cはレンズの焦点距離.破断面 直径は30 mm,H=300 mm,B=60 mm,C=51 mm,f=8.8 mm

写真1 一軸引張破断面の立体写真(藤井ほか, 2006)

2600 個の三次元ポイントを破断面上に発生させ、それらポイントを頂点とする約5000 個の三角形群で破断面モデルを構成した(図3a).

3.2 3D レーザスキャン

3D レーザスキャンは対象物に向かってレー

ザ光を照射し,発射光と対象物から返ってきた 反射光との位相差から距離を計測する.また内 部に組み込まれたプリズムやミラーを回転する ことにより,面的に座標を得ることができる.

計測には VIVID900 (Minolta 製) を利用した. これはスリット上のレーザ光で対象物をスキャ ンする光切断方式で,反射光を CCD カメラで受 光して三角測距の原理で対象物との距離情報を 得る (図 4).また同時に写真画像を入力するこ ともできる.CCD の解像度は 30 万画素 (640× 480pixel) であり,受光レンズに焦点距離の最 も長いものを用いた場合 (C=25 mm), VIVID900 と対象物の距離を 0.6 m まで近づけることがで き,111×83 mm の平面領域をスキャンすること ができる.径 30mmの一軸引張破断面をスキャ ンした際 (写真 2),破断面領域は約 2 万 4 千点

図3 破断面モデルの平面図 a:写真測量,b:レーザスキャン

の計測が行われる. これを専用のソフトウェア 上で 1/9 に圧縮することにより,約 2600 個の三 次元ポイントを破断面上で計測し, それらポイ ントを頂点とする約 5000 個の三角形群で破断 面モデルを構成した (図 3b).

VIVID900 の仕様書によれば, 測定精度は X: ±0.22 mm, Y: ±0.16 mm, Z: ±0.19 mm とな っている.

写真2 VIVID900による一軸引張破断面の写真

4. 計測結果

4.1 デジタルモデル

図3に写真測量とレーザスキャンで作成した 三角形群による破断面モデルの平面図を示した. これらを鳥瞰図にあらわしたものを図5として 示す. どちらも H-1 試料である.写真測量・レ ーザスキャンとも全体的な形状は良く似ている

図5 破断面モデルの鳥瞰図 a:写真測量,b:レーザスキャン

が、細部においてちがいがみられる.両者の詳 細な比較は次章にて述べる.

他の試料にも写真測量およびレーザスキャン による計測を行い,図3や図5のような破断面 モデルを作成した.すなわち合計9試料(R-1 ~3,G-1~3,H-1~3),18モデルの作成を行っ た.

4.2 破断面粗度

上述の写真測量およびレーザスキャンそれぞ れから得られた三次元破断面モデルを利用し, 破断面粗度への数値化を行った.破断面粗度の 数値化については多数のパラメーターが提案さ れているが(杉本ほか,1991;松本ほか,1995; Aydan and Shimizu, 1995),特に一般的に用いら れている,①二乗平均平方根粗さ(RMS),②中 心線平均粗さ(CLA),③最大粗さ(MAX)を利用 した.

二乗平均平方根粗さ(RMS);中心面からの距離の標準偏差であり、粗さ曲面を z,測定範囲を S とすると、

$$RMS = \left(\frac{1}{S} \iint_{S} z^{2} dx dy\right)^{1/2}$$

			写真測量		レーザスキャン		
試料番号	引張強度 (MPa)	RMS (mm)	CLA (mm)	MAX (mm)	RMS (mm)	CLA (mm)	MAX (mm)
R-1	4.53	0.48	0.39	2.87	0.47	0.41	2.88
R-2	3.99	0.57	0.46	3.00	0.53	0.45	3.10
R-3	3.49	0.43	0.34	2.95	0.43	0.37	2.67
average	4.00	0.49	0.40	2.94	0.48	0.41	2.88
G-1	7.19	0.66	0.54	3.81	0.64	0.55	4. 08
G-2	7.13	0.58	0.47	3.40	0.61	0.51	3.47
G-3	6.64	0.62	0.51	4.30	0.61	0.52	4. 28
average	6.99	0.62	0.51	3.84	0.62	0.52	3.94
H-1	8.24	0. 78	0.58	4.30	0.73	0.61	4.44
H-2	8.74	0.62	0.52	3.17	0.64	0.56	3.53
H-3	7.85	0.74	0.58	4.30	0.70	0.59	4.28
average	8,28	0.71	0.56	3,92	0.69	0.59	4.08

表1 破断面粗度の結果の比較

 ・中心線平均粗さ(CLA):中心面からの平 均距離であり
 ・

 $CLA = \frac{1}{S} \iint_{S} |z| dxdy$

③最大粗さ(MAX):領域内における最高点と 最低点との高さの差.

それぞれの試料における①~③の粗度を表 1 に示す. 左は写真測量,右はレーザスキャンに よる測定結果である. 両者の比較は次章にて述 べる.

5. 考察

5.1 破断面モデルの直接比較

図3の破断面モデルの平面図を比較すると, レーザスキャンでは格子配列に近い三次元ポイ ントが取得されているが,写真測量では比較的 ランダムにポイントが作成されている.レーザ スキャンは受光部でメッシュ状に三次元情報を 取得する.一方,写真測量は左右画像で同一ポ イントと認識できる部分でのみ,ポイントを発 生することができる.特に花崗岩は珪長質な岩 石で白色が多いため,左右画像間で同一ポイン トを探しにくいのも原因の一つと考えられる. 一方,レーザスキャンの結果は部分的に情報が 取得できていない領域が存在する.これは写真 -1と比較すれば明瞭であるが,黒雲母部分の 三次元情報が取得できていない.黒雲母は黒色 でレーザ光を吸収するため,反射光が弱まって いるのが原因と考えられる.

図5の鳥瞰図を比較すると、写真測量・レー ザスキャンとも全体的な形状は良く似ている. しかし写真測量は細部においても平坦な形状を 示すが、レーザは細かい凸凹形状がみられる. そこで、図3や図5のモデルの同じ部分で断面 線を作成した(図6).図6の断面線を比較する と、両者の全体的な形状は似ている.しかしな がらレーザによる断面は、中心部で波長 2~ 3mm, 振幅 0.5mm程度の波状の形態がみとめ られる. 振幅 0.5mmというのは、 レーザスキャ ンの測定精度±0.2mmとほぼ同じ数値となる. したがって対象物の正確な形状を得るには、複 数回スキャンを行って平均を取る必要がある (三戸ほか, 2002). 今回利用した VIVID900 に はそのような機能が無いため、複数回スキャン を試す機会は得られなかった.

5.2 破断面粗度の比較

写真測量およびレーザスキャンで得られた結 果から、二乗平均平方根粗さ(RMS)、中心線平

図6 破断面モデルから作成した断面図

均粗さ (CLA),最大粗さ (MAX) による粗度の数 値化を行った (表1).写真測量およびレーザス キャンの結果を比較すると,RMS および CLA で は両者の値が非常によく一致し,最大でも0.05 mm程度の差しか認められなかった.図6のよ うに,レーザスキャンの結果に細かい振幅が認 められていても,粗度の結果に差は認められな かった.これはRMS や CLA のような統計的な処 理を行えば,計算結果に大きな違いは認められ ないことが原因と考えられる.

最大粗さであるが R-3, G-1, H-2 に関して, 測定値にやや大きな差が認められた. このうち G-1とH-2はレーザスキャンの結果が0.3mmほ ど大きな値となっている. これは図6の断面線 のような振幅誤差が最大あるいは最低点で発生 していると仮定すれば理解できる. しかしなが ら R-3の最大粗さにおいて,写真測量の結果が 0.3 mm ほど大きく出ている原因はよくわからな かった.

さて,最大粗さに多少の差は見られるものの, それぞれの方向 (R, G, H) の平均をとれば, RMS, CLA, MAX のどの粗度においても,また写真測量 あるいはレーザ測量どちらを用いても, R→G→H の順序で粗度が増加していることが確認できる. 花崗岩中に R, G, H 面としてあらわれる力学異 方性は,既存マイクロクラックの定向配列や方 向による密度差が原因である(竹村・小田, 2002). またこれらに平行に形成された一軸引張り割れ 目は,既存マイクロクラックの開口や再進展に よる結合で形成され,その破断面粗度も R→G→ H の順序で粗度が増加する (藤井ほか, 2006). すなわち,写真およびレーザのどちらの手法を 用いても,良い結果を得られることができた.

5.3 計測手法の比較

ここで行った、写真測量とレーザスキャンに

よる測定方法や精度などの概要を表2にまとめる.

まずは1 試料の計測にかかる時間であるが, レーザスキャンはスキャンにかかる時間は 2.5 秒であるが (VIVID900 仕様書),その後のコン ピューター処理など破断面モデル作成までには 3~5分程度で事足りる.それに比べて写真測 量は左右写真の撮影,標定点を手入力しなくて はならないため,破断面モデル作成までにはお よそ 20~30 分は必要となる.

測定精度であるが、 $\sigma_x \sim \sigma_z$ のうち、最も大き い値を示したレーザスキャンは σ_z の 0.2mmで ある.単数回のスキャンではこれがバラツキと なって形状に表れる(図 6).写真測量はカメラ 位置計算時の残差(0.15 mm)を示した.写真測 量は左右画像の視差から三次元形状を取得する ため、レーザのようなバラツキが現れることは 少ない.レーザスキャンで複数回スキャンを行 って平均をとれば、バラツキの少ない3次元形 状が取得することが予想できるが、回数が増え れば後のデータ処理も含めて計測にかかる時間 も増加することになる.

測定時に取得できる画像情報であるが、レー ザスキャンは30万画素と物足りない、写真測量 は今回利用したデジタルカメラが500万画素で あった.写真測量はそもそもデジタル画像上で 計測を行うものであり、得られる画像の画素数 や鮮明さが測量精度に影響を及ぼす.

さらにその他対象物への適用であるが,レー ザスキャンは VIVID900 を利用する限り,1.2× 0.9 m 程度の範囲で,計測距離も2.5 m 程度ま でである.さらに大きな対象物に対しては,別 のレーザスキャン機器が必要となる.写真測量 は対象物までの距離とレンズ焦点距離を調整す れば,数 km 程度のスケールまで適用することが できる (藤井ほか,2006).

	レーザスキャン*1	写真測量 ^{*2}
計測にかかる時間(1試	5分程度(単数回)	20~30分
測定精度	0.2mm程度	0.15mm程度
測定結果の比較	バラツキ多→複数回 スキャンの平均必要	バラツキ少
画像貼り付け	30万画素	500万画素
対象物のスケール	0.1~1.2m	0.1 ~ 1000m

表2 レーザスキャンと写真測量における計測の比較

*1: Minolta VIVID 900使用時

*2: 市販のデジタルカメラ(Minolta Dimage 7) および川惣電機Stereo Eye V3使用時

これらの結果から著者らの意見を述べれば, 単純に三次元形態を取得したいのであれば,標 定や写真撮影などわずらわしい作業の少ない, レーザ計測が短時間で便利である.また最近は レーザの反射強度情報を利用する試みもあり (小山ほか,2008),これらの将来性にも期待が 掛かかる.一方,鮮明な画像情報も取得し,立 体視観察や判読なども同時に行いたいのであれ ば,写真測量技術の適用が最適であろう.また 様々なスケールの対象物に適用できる点も,写 真測量の魅力といえる.

参考文献

- Amitrano, D. & Schmittbuhl, J. (2002): Fracture roughness and gouge distribution of a granite shear band, Journal of Geophysical Research, 107, B12, s2375, doi:10.1029/2002JB001761.
- Aydan, Ö. and Shimizu, Y. (1995): Surface morphology characteristics of rock discontinuities with particular reference to their genesis, In Fractography :fracture topography as a tool in fracture mechanics and stress analysis (ed., M. S. Ameen), Geological Society Special Publication Vol. 92, London, pp.11-26.
- Develi, K., Babadagli, T., Comlekci, C. (2001): new computer-controlled surface-scanning device for measurement of fracture surface roughness,

Computers & Geosciences, Vol. 27, pp.265-277.

- 藤井幸泰・堀伸三郎・高橋学・竹村貴人・林為 人(2006):デジタル立体写真測量による,稲 田花崗岩の異方性と一軸引張破断面粗度のち がいについて,応用地質, Vol. 47(5), pp. 252-258.
- 林 為人・高橋 学・藤井幸泰・西山 哲・竹 村貴人 (2007):一軸引張状態における数種類 の花崗岩質岩石と斑れい岩の変形特性,材料, Vol. 56(7), pp. 654-659.
- Jessell, M. W., Cox, S. J. D., Schwarze, P. & Power, W. L. (1995): The anisotropy of surface roughness measured using a digital photogrammetric technique, Special Publication of Geological Society, London, Vol. 92, pp. 27-37.
- 小山倫史・Quanhon Feng・大西有三(2008): レ ーザースキャナを用いた岩盤不連続面幾何学 情報の取得に関する研究,第43回地盤工学会 研究発表会講演集, pp. 233-234.
- Lanaro, F. (2000) : A ramdom field model for surface roughness and aperture of rock fractures, International Journal of Rock Mechanics and Mining Science, Vol. 37, pp.1195-1210.
- 松本浩二・小島隆・村井正(1995):花崗岩中の 小規模水圧破砕き裂の表面粗さと初期間隙分 布,日本地熱学会誌,Vol.17,pp.213-232. 三戸嘉之・本多政彦・小野尚哉・藤井徹・安原裕

貴・淺野広樹・石井靖雄,2002,のり面・崖地の高 密度三次元座標データの取得と応用地質分野 への活用-2 点間の高精度計測から,面的な 高密度計測へ--,応用地質, Vol. 42(6), pp. 351-364.

- 村井俊治・近津博文(2004): デジタル写真測量の理論と実践, 社団法人日本測量協会, 東京, 343p.
- 西山哲・大西有三・大津宏康・矢野隆夫・龍明 治・李徳河,2004,デジタル画像計測法の斜面防 災モニタリングシステムへの応用に関する研 究,応用地質, Vol. 44(6), pp. 331-340.
- Sausse, J. (2002): Hydromechanical properties and alteration of natural fracture surfaces in the Soultz granite (Bas-Rhin, France), Tectonophysics, Vol. 348, pp.169-185.
- 杉本文男・古住光正・阿部司(1991):岩石の破 断面の粗さに関する研究,応用地質. Vol. 32(3), pp. 12-18.
- 竹村貴人・小田匡寛 (2002):マイクロクラック の三次元構造解析による花崗岩質岩石の脆性 破壊機構. 地質学雑誌, 108, 453-464.
- Wu, K., Yan, A., Liu, J., Zhang, D. & Yao, W. (2000): Reconstruction and analysis of 3-D profile of fracture surface of concrete, Cenment and Concrete Research, Vol. 30, pp.981-987.
- Xie, H., Sun H., Ju, Y. & Feng Z. (2001): Study on generation of rock fracture surface by using fractal interpolation, International Journal of Solids and Structures, Vol. 38, pp.5765-5787.
- Zhou, H. W. & Xie, H. (2004): Anisotropic characterization of rock fracture surfaces subjected to profile analysis, Physics Letters A, Vol. 325, pp.355-362.