不連続性岩盤の動的解析手法の現状と課題

佐々木猛

サンコーコンサルタント(株)岩盤工学研究所

(本稿は,平成22年度深田研ジオフォーラムにおける講演内容を,著者自身が取り纏め, 投稿いただいたものである.)

要旨:本稿では,主として2007年にLisbonで開催された第10回ISRM Congressから 昨年11月にシンガポールで開催されたICADD9および本年6月にEUROCK2010に発 表された最近の論文を含めた,約10年間における岩盤の不連続面を考慮した解析手 法を概括すると共に,著者らがこの間に実施してきた研究の中から代表的な事例を 紹介する.また,このような解析を実施するに際し,岩盤不連続面の調査に基づく モデル化の精度を現実の現象に近づけることが最も重要である.したがって,本稿 では解析に用いる不連続面の物性評価法やモデル化の著者らが行った代表的な研究 も概括する.

キーワード:岩盤不連続面,数値解析,FEM,DDA,マニフォールド法

1. はじめに

地盤の動的解析は、特に液状化現象に代表 される二相系の解析分野で発達してきた. 1964年の新潟地震による川岸町アパートの倒 壊、1995年の兵庫県南部地震によるポートア イランドの埋め立て地盤の変形など、その被 害が生活に直結することから、我が国では極 めて高度な研究が多数なされている.

一方,岩盤では,Goodman (1989) がインタ クトな供試体の繰返し載荷試験を実施し,繰 返し回数と残留変形と強度の関係を示してい る(図1).これは,比較的小さな供試体でも その中に微細な亀裂が存在し,その結果残留 ひずみが生じることを示している.

比較的大きな不連続面である断層について はGoodman *et al.* (1968) がジョイント要素を提 案し,その後これらを用いた多数の解析例が あり,定番となっている.また,それより規 模の小さなジョイントなどは、その生成過程 で様々な形態と複雑な構造となっていること から、そのモデル化がそれほど簡単ではない. また、岩盤の強度・変形試験装置は高い剛性 が必要なことから、多額の費用が必要であり、 ダム、発電所など重要構造物の設計などで主 として発展してきた.

深田地質研究所年報, No.11, p. 139-153 (2010)

岩盤中に存在するジョイントなどの岩盤不 連続面を考慮した解析法に関する評価はこれ までに幾度か拙著に述べられている(大西・ 佐々木,1995;佐々木,1996;佐々木,1999; 佐々木,2000;大西・佐々木,2002).しか し,これらは静的解析を主として対象として いる.

岩盤内に存在する亀裂と周波数特性,減衰 特性の関係は,King et al. (1975)が割れ目の多 い場合,高周波の波動の減衰が著しいことを 示した(図2).これと関連して,周期と振幅 の関係も示している.Schneider (1967), Beniawski (1978)は,亀裂性岩盤の平板載荷試 験における繰返しの残留変形特性,岩盤の変 形係数とせん断波の周波数の関係などを示し た(図3,4).また,周波数と亀裂頻度が逆比例 関係にあることも示している.

つまり,岩盤の変形試験で現れる非線形な 特性の原因は亀裂の滑りが主要なものである ことを指摘している.Jafari *et al.* (2004) は亀裂 のレプリカによる動的繰返し荷重実験を行っ ている.これらから,ジョイントの強度は繰 返し回数に反比例して指数的に低下し,残留 強度に収束して行くことを示している(図5). 不連続性岩盤の等価連続体モデルによる動的 解析手法については,Cho (1988),Cho *et al.* (1991) が超電導磁石による電力地下貯蔵の岩盤 内繰り返し載荷モデルについて,節理群を考 慮したコンプライアンス法を初めて提案した. これは岩盤のジョイント内の間隙水圧の変動 を考慮した2相系の解析である.

佐々木ほか(1994)はこれらを基本に複数の 任意方向のジョイントの組合せとその非線形 特性を考慮した複合降伏モデルを提案した. また,佐々木ほか(2004)はこれらに繰返し載 荷特性を考慮し,平板載荷試験の繰返し載荷 による応力—変形特性を表現した.萩原ほか (2010),岩田ほか(2010),Iwata et al. (2010)は, 岩盤斜面,大型構造物基礎の地震応答解析を 行っている.本稿では,これらを中心に解析 手法の歴史と現状および課題について述べる.

2. 不連続面の非線形繰返し強度,変形特性

岩盤不連続面の強度,変形特性に関する代 表的な研究とこれらに関連した研究を参考文 献に示した(Kulhawy, 1975; Bandis *et al.*, 1981; Sasaki *et al.*, 2004; 佐々木ほか,2005; 岩田ほか, 2006; 吉中ほか,2006). これらの研究から, 岩盤不連続面の強度,変形特性はその拘束応 力に強く依存し,非線形な関係にあることが 知られている(Kulhawy, 1975; Bandis *et al.*, 1981).またこれらは、荷重の載荷と除荷経路で異なる履歴を有している.佐々木ほか (2005)は岩盤不連続面の繰り返し載荷特性を考慮した構成式を提案し、平板載荷試験の解析を行いこれまでに行われた実験結果を説明している.

また,吉中ほか(2006)は岩盤不連続面の強 度,変形特性と寸法効果についてこれまでの 研究結果をまとめている.これまで岩盤不連 続面の強度,変形特性は主として載荷状態の 研究が多く,除荷特性や繰り返し特性を考慮 した解析は少ない.これらは,節理を含む岩 盤の掘削解析や動的解析の基本特性として利 用することが考えられる(岩田ほか,2005; 佐々木ほか,2005)(図6).

Amadei *et al.* (1995) は繰返し一面せん断試験 にジョイントの強度特性を提案している.また,前述のJafari *et al.* (2003, 2004) はジョイント の繰返し強度・変形特性と繰返し回数との関 係を示した.

図6 ジョイントの変形特性 (萩原ほか(2010),岩田ほか(2010))

3. 等価連続体解析

図7に等価連続体解析手法の代表的なものを 示す.これらは、応力一定仮定とひずみ一定 仮定に分類される.応力一定仮定は地盤のよ うな圧縮材料を対象としている.基盤と不連 続面の応力は同一と仮定し、コンプライアン ス法を用いて等価な変形係数を求める.この 場合、不連続面の非線形性や強度も設定する ことができる.

等価連続体解析手法は著者らが提案した複 合降伏モデルの他に、これまで、種々の手法 が提案されているが、動的解析に限っては、 弾性波速度検層結果を基本とする等方弾性を 仮定する方法がほとんどである.

Yoshinaka et al. (2007) は複合降伏モデルを用 いて地震による大規模斜面崩落解析を簡便的 な静的解析により行い,崩落面の滑り安全率 を評価している.前述のように,萩原ほか (2010),岩田ほか(2010), Iwata et al. (2010) は, 岩盤斜面,大型構造物基礎の地震応答解析を 行っている.

3.1 複合降伏モデルの概要

(1) 全体運動方程式

式(1)は, Hamiltonの原理による運動方程式 を示す.

$$[M]\{\ddot{u}\} + [C]\{\dot{u}\} + [K]\{u\} = \int_{S_2} [N]^T \{f\} ds - [M]\{\ddot{U}\} + \int_{v} [N]^T \begin{cases} 0\\ -\gamma \end{cases} dV$$
(1)
ここに、 [M]: 質量マトリックス、 [C]: 減衰マ

トリックス, [K]: 剛性マトリックス, {ü}:加 速度, {u}:速度, {u}:変位,右辺第1項は表 面外力,第2項は地震による加速度外力,第3 項は自重による物体力である.これらを式(2) の増分形式で表わす.

 $[M]\{\Delta \ddot{u}\} + [C]\{\Delta \dot{u}\} + [K]\{\Delta u\} = \{\Delta f\} (2)$

(2) 釣合方程式の解法

式(2)の運動方程式は, Newmark の β, γ 法で, β=0.25, γ=0.5 とし, これを増分変位に対する 連立方程式の式(3)を各時間刻みで解くことに より得られる.

$$\begin{bmatrix} [K] + \frac{1}{\beta \Delta t^2} [M] + \frac{\gamma}{\beta \Delta t} [C] \end{bmatrix} \{ \Delta u \}$$

= $-\alpha (\Delta t) [M] + [M] \begin{bmatrix} \frac{1}{\beta \Delta t} \{ \dot{u}(t) \} + \frac{1}{2\beta} \{ \ddot{u}(t) \} \end{bmatrix} + [C] \begin{bmatrix} \frac{\gamma}{\beta} \{ \dot{u}(t) \} + \left\{ \frac{\gamma}{2\beta} - 1 \right\} \Delta t \{ \ddot{u}(t) \} \end{bmatrix}$
(3)

ここに、 $\{\Delta u\}$:増分変位、 Δt :時間刻み、 β 、 γ : Newmark の積分定数、 $\alpha(t)$:地震加速度 の時刻歴である.変位増分が求まったら、式 (4)で加速度増分、式(5)で速度増分を求める.

$$\{\Delta \ddot{u}\} = \frac{1}{\beta \Delta t^2} \left[\{\Delta u\} - \{\dot{u}(t)\}\Delta t - \frac{\Delta t^2}{2} \{\ddot{u}(t)\} \right] (4)$$
$$\{\Delta \dot{u}\} = \left[\{\ddot{u}(t)\} + \delta \{\Delta \ddot{u}\} \right] \Delta t \tag{5}$$

(3) 質量および構造減衰

式(3)のブロックの構造減衰マトリックス *C* は粘性係数と質量マトリックス *M* を用いて式 (6)で表わされる.

$$[C] = \alpha[M] + \beta[K] \tag{6}$$

ここに, α: 質量減衰定数, β: 構造減衰定数で ある.

(4) 複合降伏モデルによる不連続面の構成則 複合降伏モデルは式(7)に示すように岩盤の 総ひずみ {*ε*_r} を母岩のひずみ {*ε*_s} と複数の節 理群のひずみ $\{ \varepsilon_l \}$ の和で表現されるものと仮 定している.

$$\{\varepsilon_T\} = \sum \{\varepsilon_I\} + \{\varepsilon_R\}$$
(7)

ここで,各節理群は周期的に存在し,それら の体積が母岩に比較して無視でき,母岩の応 力と節理群の応力は等しいと仮定すれば,岩 盤の総ひずみは次式で表すことができる.

$$\{\varepsilon_T\} = \left[\sum_{T} [F_I] + [E]^{-1}\right] \cdot \{\sigma\} = [C] \cdot \{\sigma\} \quad (8)$$

ここに、 $\{\sigma\}$:総応力ベクトル、[E]:等方弾性体の応力-ひずみマトリックス、 $[F_I]$:節理群のコンプライアンスマトリックス、[C]:母岩と節理群の和のコンプライアンスマトリックス、スである.

(5) 節理群の降伏条件

式(9)に示すMohr-Coulombの降伏条件を節理 群に用いる.

$$F_s = |\tau_s| - (C + \sigma_n \tan \phi_J) \tag{9}$$

ここに、 τ_s :不連続面のせん断応力、 σ_n :不 連続面の垂直方向応力、C:不連続面の粘着力、 ϕ_I :不連続面の摩擦角である.

(6) 節理群の変形特性

不連続面の垂直剛性 *K_n* は式(10)に示す Bandisらの提案式による双曲線型の変形特性を 用いた.

$$K_n = K_{ni} \left[1 - \frac{\sigma_n}{V_m K_{ni} + \sigma_n} \right]^{-2}$$
(10)

ここに, K_{ni} :初期垂直剛性, V_m :不連続面の最 大閉合量, σ_n :不連続面の垂直応力である.

不連続面の垂直方向の繰返し載荷試験では,

図 6 に示すように除荷過程においても非線形 性を示し,残留変形を生じる. 任意の拘束圧 σ_{ni} における不連続面の閉合量を V_i とし,これ を弾性変形 V_{ei} と塑性変形 V_{pi} の和として式(11) で表し,弾性変形 V_{ei} は式(12)に示す最大閉合 量 V_m の二次関数で定義する. 除荷時の変形特 性は,この弾性変形 V_{ei} を Bandis の提案式に除 荷特性を付加した.

$$v_i = v_{ei} + v_{pi} \tag{11}$$

$$V_{ei} = \left(1 - \frac{V_i}{V_m}\right)^2 V_i$$
(12)

また,不連続面のせん断剛性 *K*_sは式(13)に示 す Kulhawy の提案式による双曲線型の変形特 性を用いた.

$$K_{st} = K_{si} \left(\frac{\sigma_n}{P_a}\right)^{nj} \left(1 - \frac{\tau_s \cdot R_f}{\tau_p}\right)^{p} \qquad (13)$$

ここに, K_{si} : 初期せん断剛性, σ_n : 不連続面の 垂直応力, Pa: 大気圧, τ_p : C, ϕ_J により計算 されるせん断強度, τ_s : せん断応力, nj: 剛性 係数, R_f : 破壊比であり一般的に 0.7~0.9 の係 数. なお, 一般的に係数 nj, R_f は不連続面の せん断試験結果をもとに設定される.

不連続面のせん断方向の繰返し載荷試験に おいても、図6に示すように除荷過程で残留変 形が生じる.垂直方向と同様に、任意の拘束 圧 τ_iにおける不連続面のせん断変位 U_iを,弾性 変形 U_{ei}と塑性変形 U_{pi}の和として式(14)で表し, 弾性変形 U_{ei}は式(15)に示す破壊接近度 τ_i/τ_pの二 次関数で定義する.除荷経路の変形特性は, 単純化のために線形とした.

$$u_i = u_{ei} + u_{pi} \tag{14}$$

$$u_e = u_i \cdot \left(1 - \frac{\tau_i R_f}{\tau_p}\right)^2 \tag{15}$$

岩盤不連続面の動的繰返し一面せん断試験

はJafari et al. (2003, 2004), Puntel et al. (2006), Belem et al. (2004) により行われている. これら の結果では,繰返し回数により不連続面の凹 凸が平滑化することにより,強度が一定に収 束する挙動などが報告されている. しかし, 本報告ではそのような特性は考慮していない. また,地震応答解析では,不連続面の垂直応 力は引張り側と圧縮側に交互に変化し,連続 的な応力経路を辿ることは少ない. したがっ て,不連続面の剛性の変化も拘束応力の変化 に伴い断続的な変化をする.

図8から図13は萩原ほか(2010), Iwata *et al.* (2010)による,2004年の中越地震で崩落した斜 面の複合降伏モデルによる,地震応答解析結 果を示す.

入力地震波は沖積地盤上で観測されており, 崩落斜面から2km程度離れた地点である.その ため,崩落斜面の洪積地盤の-50mまでSHAKE で引き戻し,長周期成分を少なくしたものを 入力している.図11の法先の変位応答では, ジョイントを考慮したモデルが多少大きくな っており,残留変位が生じている.図12は, 法先要素の低角度(22°)のジョイント面上のせ ん断応力分布を示す.弾性解と比較し,川側 へのせん断応力が大きくなっている.図13は

(萩原ほか, 2010; Iwata et al., 2010)

図9 入力地震波(水平)

図13 ジョイント面上の破壊接近度

同じくジョイント面上の破壊接近度を示すが, 初期の破壊時刻はほぼ同時期である.また, 弾性解の破壊接近度はジョイント面上の鉛直 応力とせん断応力を同様に計算して算出して いる.

図14は岩盤基礎上の大型構造物のモデルで ある.図15に設計用の入力地震波を示す.こ れは,硬岩用にスペクトルから作成された人 工地震波である.図16は建屋基盤における弾 性およびジョイントの組合せがそれぞれ,15° +105°,30°+120°,45°+135°の場合の加速度応 答結果を示す.各ジョイント角度の組合せの 違いにより異なる応答結果を示しているのが 分かる.図17はジョイントの組合せが30°+120 °の場合の7秒での破壊接近度分布を示す.建 屋の偶角部付近で大きな値となっている.

図14 大型構造物基礎モデル

(Iwata et al., 2010)

図15 設計用地震入力波

4. 不連続体解析手法

図18に代表的な不連続体解析手法を示す. 不連続変形法(DDA)はShiにより開発された (Shi, 1989).わが国では,京都大学大西教授を 委員長とする不連続性岩盤解析実用化研究会 を中心に研究活動を行っている.また,これ らは国際不連続体解析会議が組織化され本年 で第9回がシンガポールで開催されている.こ

図18 代表的な不連続体解析手法

の中には、DDAの他にブロック理論、DEMや 竹内・川井らが提案する統一エネルギー理論 を適用したHPMも含まれる.これは、アメリ カ、日本、イギリス、中国、台湾、シンガポ ール、イスラエル、イランなどが主要なメン バーで今回は100編が投稿され活発な活動を行 っている.

わが国では、大西・陳(1997)による豊浜トン ネルの崩落解析が注目された.また、佐々 木・吉中(2002)によるピラミッドの解析や、 最近では、Sasaki *et al.* (2004), Sasaki *et al.* (2005), Ohnishi *et al.* (2005), Sasaki *et al.* (2007)による地 震応答解析の実験シミュレーションや適用解 析が行われている.また、萩原ほか (2004) に よる落石の3次元解析も行われ、落石経路と範 囲の推定に利用されている.この他の代表的 な事例は拙著 (大西ほか, 2005) を参考にさ れたい.

マニフォールド法(Manifold法)はDDAと同様にShiにより開発された(Shi, 1991; Shi, 1992).わが国では,鈴木,大坪ほか(1998)により有限被覆法として研究されている.ここでは,それらの研究は省略する.

Shiによる手法はメッシュが自動化されており、メッシュレス法の一つに数えられている.

その後, Sasaki et al. (1997) よる4節点アイソパ
 ジョイント要素(Goodman,1968)
 ジメトリック要素や弾塑性解析がなされ,最
 m体-ばねモデル(川井,1976)
 HPM(竹内,川井, 2004)
 DEM(Cundall,1971)
 DDA(Shi,1984)
 Manifold法(Shi,1991)
 不連続FEM(Hilbert,1993)
 その後, Sasaki et al. (1997) よる4節点アイソパ
 ラメトリック要素や弾塑性解析がなされ,最
 近では, Miki et al. (2007)によって,接触面の
 釣合い条件の改良や地層境界を考慮した解析
 が可能となり,より精度が向上している.ま
 た,本手法は中国グループやシンガポールグ
 ループでも熱心に研究が行われている.

4.1 DDAによる地震応答解析の概要

動的大変形解析の弾性体ブロックの接触を 含む運動方程式を統一的に表現すると、系全 体のポテンシャルエネルギー∏⁵³⁵は式(16)のよ うになる.

$$\Pi^{sys} = \sum_{i=1}^{n} \Pi^{(block)i} = \sum_{i=1}^{n} \left(\Pi^{i} + \sum_{j=1}^{m} \Pi^{i,j}_{PL} \right) \quad (16)$$

式(16)の右辺第1項は各ブロックの連続体とし てのポテンシャルエネルギーであり,第2項 はブロック*i*のブロック*j*に対する接触のポテ ンシャルエネルギーである.第1項は式(17)で 表される.

$$\Pi^{i} = F(x, y) \int_{V} \frac{\rho^{c}}{\rho^{0}} \left[\tau_{ij}^{*} \delta D_{ij} - \frac{1}{2} \sigma_{ij} \delta (2 D_{ik} D_{kj} - v_{k,i} v_{k,j}) \right] dV$$
$$- \int_{\Gamma} \overline{f} \cdot u d\Gamma - F(x, y) \int_{V} \left[\rho(\dot{b} - \ddot{u}) - c\dot{u} \right] \cdot dV \quad (17)$$

式(17)の第 1 項は速度場のひずみエネルギー, 第 2 項は表面摩擦エネルギーであり,第 3 項は 慣性力及び減衰力によるエネルギーである. ここに, \ddot{u} :加速度, \dot{u} :速度, ρ :質量,b: 物体力,c:減衰定数, \bar{t} :表面摩擦力,V:ブ ロックの体積, Γ :ブロックの表面積である.

DDA (Shi,1985) は式(18) に示す Hamilton の原 理による接触を含む運動方程式をひずみエネ ルギー最小化原理により釣合い方程式を求め て定式化している. $M\ddot{u} + C\dot{u} + Ku = F \tag{18}$

ここに、M: 質量マトリックス、C: 減衰マトリックス、<math>K: 剛性マトリックス、F: 外力ベ $クトル、<math>\ddot{u}:$ ブロック重心加速度、 $\dot{u}:$ ブロッ ク重心速度、u:ブロック重心の剛体変位、剛 体回転、ひずみである.式(18)の減衰マトリッ クス C は粘性係数 η と質量マトリックス M を 用いて、式(19)で表される.

$$C = \eta M \tag{19}$$

粘性係数ηの物理的意味は,落石自身の減衰 や空中にある状態での空気抵抗,斜面上の植 生や樹木による減衰などとして評価される.

式(18)の運動方程式は, Newmark の β, γ 法で, β=0.5, γ=1.0 とし, これを増分変位に対する連 立方程式の式(20)を各時間刻みで解くことによ り得られる.

$$\widetilde{K} \cdot \Delta u = \widetilde{F} \tag{20}$$

$$\widetilde{K} = \frac{2}{\Delta t^2} M + \frac{2\eta}{\Delta t} M + \frac{\rho^c}{\rho^0} [K_e + K_s] \quad (21)$$

$$\widetilde{F} = \frac{2}{\Delta t} M \cdot \dot{u} + (\Delta F - \sum \int \sigma dv) - M \alpha(t) \quad (22)$$

ここに、 Δu :増分変位、 K_e :線形項の剛性マトリックス、 K_s :剛体回転に伴う初期応力マトリックス、 $\alpha(t)$:地震加速度の時刻歴である.

また, *i*ステップでのブロック内の任意点の 時刻 *t* の変位,速度,加速度の関係は式(23)~ (25)で表される.

$$u_{i} = \begin{bmatrix} D_{i} \end{bmatrix} = \frac{\Delta t^{2}}{2} \frac{\partial^{2} \begin{bmatrix} D(t) \end{bmatrix}}{\partial t^{2}} + \Delta t \frac{\partial \begin{bmatrix} D(t) \end{bmatrix}}{\partial t} \quad (23)$$
$$\dot{u}_{i} = \frac{\partial \begin{bmatrix} D(t) \end{bmatrix}}{\partial t} = \frac{2}{\Delta t} \begin{bmatrix} D_{i} \end{bmatrix} - \frac{\partial \begin{bmatrix} D(t - \Delta t) \end{bmatrix}}{\partial t} = \frac{2}{\Delta t} \begin{bmatrix} D_{i} \end{bmatrix} - \dot{u}_{i-1}$$
$$(24)$$

$$\ddot{u}_{i} = \frac{\partial \left[D(t)\right]}{\partial t^{2}} = \frac{2}{\Delta t^{2}} \left[D_{i}\right] + \frac{2}{\Delta t} \frac{\partial \left[D(t - \Delta t)\right]}{\partial t}$$
(25)
$$= \frac{2}{\Delta t^{2}} \left[D_{i}\right] - \frac{2}{\Delta t} \dot{u}_{i-1}$$

図19は、DDA (Yoshinaka et al., 2007) による 斜面の崩壊解析結果であるが、実際の崩落形 状とほぼ一致している。特に不連続体解析で は、ブロックの形状が結果に大きな影響を与 えることが分かっており、どのような形状に ブロックが分割されるかと言うモデル化の調 査が特に重要である.

図20, 図21, 図22は, 斜面上にある砂利崩 落の振動実験を解析した(萩原ほか, 2008),入 力波,解析結果と実験結果の比較である.こ の解析では,図22に示す斜面と斜面上の砕石 の固有振動数に比率に対して,応答倍率を示 している.

これらでは、砕石の固有振動数が一定以上 では、応答倍率がゼロに近くなり、無意味な 解析となることを示している。特に、砕石を 剛体と仮定した解析法では、砕石の固有振動 数が無限大となり、応答倍率がゼロとなるの で、上部ブロックは基盤の変位と同期するこ とになり解析する意味が小さい。

図19 DDAによる斜面崩落解析

(Yoshinaka *et al.*, 2007)

図21 DDAによる落石実験解析結果

図22 DDAによる落石実験解析応答倍率

図23,図24はピラミッドの上部構造の応力 と基礎の応力をDDAとManifold法で比較した結 果である.DDAでは上部のブロック構造の変 位や応力が求まるが、その基盤の沈下などは 一定となり、上部構造の安定性評価の一つで ある基盤の不同沈下現象を解析しづらい.上 部構造は完全にブロック状態でDDAの応力分 布は実際に近いが基礎部分はManifold法の結果 が現実に近い.図25,図26のGard橋の結果も 同様である.図25はDDAによるGard橋の主応 力分布を示す.これらはアーチに沿って綺麗 に分布しているのが分かる.図26は橋脚部基 礎の不同沈下を見るため, Manifold法で解析した結果である.これらでは, 橋脚基礎部分で大きな不同沈下は認められず, 安定した上部構造であることが分かる.

図23 DDAによるピラミドの主応力

(Sasaki *et al.*, 2009)

(Sasaki *et al*., 2009)

図26 MMによるGard橋の鉛直変位 (Sasaki *et al.*, 2009)

図27はDDAとManifold法を組合せた解析で両 者の欠点を補っている(Miki et al., 2009). DDAでは、地震加速度が斜面で場所にかかわ らず同じであるが、この方法では、場所によ って異なった振動特性を上部ブロックに与え ることが出来、より現実的である.また、 DDAではブロック剛体回転が未知数になって おり、斜面上を回転しながら崩落するブロッ クの表現が可能であるが、Manifold法は本質的 には有限要素法と同じであり、剛体回転モー ドを表現できないため、このような組合せの 解析が必要である.

5. 結論と課題

本稿では,岩盤工学における最近の不連続 体解析法に関して,特に著者らの研究グルー プを中心に述べた.

複合降伏モデルでは,不連続面の繰り返し 変形特性を考慮することにより,今まで弾性 体と仮定した解析では表現が困難であった掘 削解析や計測値との照合が容易となり,より 実現象を表現可能になった.

また、DDAは、理論的には、微小変形の範 囲では、連続体のFEMと同等の精度を有し、 回転モードが含まれる現象は、格段に不連続 体解析法が物理現象を良く表現し得ることが 分かっている.

今後の課題としては,

- ・ 亀裂の調査に基づく走向/傾斜,間隔,長
 さ分布の推定などをより的確に行い,モデ
 ル化の精度を向上させる手法の確立
- 不連続面の接触の非線形な強度・変形特性の導入と寸法効果の評価
- 不連続面の接触力の精度向上手法の開発,
 例えば、川井による統一エネルギー理論の
 導入など
- 他モデルとの結合、例えば、FEMとDEM との結合(Munjiza, 2004)、DDAとFEMとの 結合(中国)、DDAとManifold法との結合 (Miki et. al., 2009)
- ・ 3次元モデルの実用化

などである.岩盤不連続面の本質は3次元であ り,現在 3D-DDAの基本的な部分は完成して おり,これら実用化作業を進めている.また, 究極的には3D-DDAと3D-Manifold法の結合が考 えられる.

またジョイントの繰返し載荷の構成則では Jafari *et al.* (2003), Belem *et al.* (2004), Puntel *et al.* (2006)が示している,ジョイント面の繰返し 回数と強度低下の関係について,著者は以下 の関数を定義し,若干の検討を行った.

$$\tau_{ej} = c_{j0} - c_{jd} \left(\frac{N_{i}}{N_{er}} \right)^{m} + \sigma_{n} (\emptyset_{j0} - \emptyset_{jd} (\frac{N_{i}}{N_{er}})^{n}) (26)$$

ここに, cj:ジョイントの強度, φj:ジョイン トの摩擦角, σn:ジョイントの鉛直方向拘束応 力, cjd:粘着力の繰返しによる低下率, φjd: 摩擦角の繰り返しによる低下率, Ncr:残留強 度に達する繰返し回数とする.

式(26)の指数関数を定義し、斜面モデルに適 用し試算した.本モデルでは、前述の斜面モ デルで、ジョイントの強度が繰返し回数1000 回で20%低下し、残留強度に収束して行くと仮 定している.

この結果では、繰返し回数の増加に従って 残留変位が増加している(図28).しかし、実 験に使用した供試体の寸法に限度があり、実 際の自然に存在する寸法との関係を今後とも、 検討する必要がある.

解析精度の観点では、小さすぎる時間刻み、 大きなブロックと小さなブロックが混在する モデルでは有効計算桁の関係から桁落ちによ り精度が低下する.これは、弾性係数やペナ ルテイ係数も同様で、その比が大きな値を用 いると同様の現象が発生する.これらの解決 には、全体剛性マトリックスのスケーリング 手法や4倍長桁の0Sやコンパイラが必要である.

しかし、本分野の研究は日進月歩であり、

研究者らの絶え間ない努力により必ず解決さ れるものと期待している.

参考文献

- Amadei, B. and Wibowo, J.: Applicability of existing models to predict the behavior of rock joints under different boundary conditions, Proceedings of the Second International Conference on Analysis of Discontinuous Deformation, pp. 36-106, 1997.
- Bandis, S., Lumsoden, A. C. & N. R. Barton : Experimental studies of scale effects on the shear behavior of rock joints, Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr. Vol. 18, pp. 1-21, 1981
- Belem, T., Souley Mountaka, Franqoise Homand: Generalized directional peak shear stress criterion for dilatant rock joints, *Proceedings of 57th Canadian Geotechnical Conference*, 2004.
- Bieniawski, Z. T.,: Determining rock mass deformability – experience from case histories, Int. J., Rock Mech. Min. Sci., Vol. 15, No. 5, pp. 237-248, 1978.
- Cho, T. F. : Continuum and discrete modeling of porous and jointed rock : Application to the design of near surface annular excavations, The University of Wisconsin, 1988.
- Cho, T. F. *et al.* : Continuum modeling of porous rock with arbitrary joint sets, including coupled deformation-diffusion behavior, Proceedings of the 7th ISRM Congress, Aachen, pp.805-811, 1991.
- Goodman, R. E.: Introduction to the rock mechanics, Second Edition, Jhon Willy & Sons, Inc., 1989.
- Goodman, R. E., and Taylor, R. L.: A model for the mechanics of jointed rock, Jl. Soil Mech. & Found. Div., Proc. ASCE, Vol. 94, No. SM3, pp. 637-659,

1968.

- 萩原育夫,三木茂,佐々木猛,大西有三,西 山哲:不連続変形法による3次元落石解析 事例,第9回計算工学講演会論文集,pp. 217-218,2004.
- 萩原育夫, 佐々木猛, 佐々木勝司, 大西有三, 西山哲, 伊藤洋: DDA による積層ブロック モデルの応答特性に関する基礎的検討, 土 木学会, 第62回年次講演会, pp.91-92, 2007.9
- 萩原育夫, 佐々木猛, 大西有三, 伊藤洋: DDA によるブロック構造の動的応答に関す る基礎的検討, 土木学会, 第 37 回岩盤力学 に関するシンポジウム講演集, pp. 153-158, 2008.
- 萩原育夫,佐々木猛,大西有三,伊藤洋:不 連続変形法による斜面崩壊振動実験の検討, 土木学会,第63回年次講演会,2008.
- 萩原育夫, 佐々木猛, 吉中龍之進, 大西有 三: 不連続体解析法による地震時岩盤斜面 崩壊の挙動解析, 地すべり学会, 2009.
- 萩原育夫, 佐々木猛, 佐々木勝司, 吉中龍之 進:不連続面に着目した複合降伏モデルに よる崩壊斜面の地震応答解析, 土木学会, 第 39 回岩盤力学に関するシンポジウム, pp.
- 岩田直樹, 佐々木猛, 吉中龍之進: 複合降伏 モデルによる多重繰返し載荷における平板 載荷試験の解析的検討, 第 40 回地盤工学研 究発表会講演論文集, pp. 1221-1222, 2005.
- 岩田直樹, 佐々木猛, 吉中龍之進: 複合降伏 モデルによる平板載荷試験における変形特 性の寸法効果に関する解析的検討, 土木学 会第 35 回岩盤力学に関するシンポジウム,
 - pp. 149 -154, 2006.

328-333, 2010.

岩田直樹, 佐々木猛, 吉中龍之進: 不連続性

岩盤上に設置する構造物の複合降伏モデル による地震応答解析,土木学会,第 39 回岩 盤力学に関するシンポジウム, pp. 21-26, 2010.

- Iwata, N., Sasaki, T., K. Sasaki and R., Yoshinaka: Applicability of earthquake response analysis by Multiple Yield Model for discontinuous rock, ISRM Symposium, EUROCK2010, Swiss Lausanne, pp. 535-538, 2010.
- Jafari, M. K., K. Amini Hosseini, F. Pellet, M. Boulon, O. Buzzi : Evaluation of shear strength of rock joints subjected to cyclic loading, *Soil Dynamics and Earthquake Engineering 23*, pp. 619-630, 2003.
- Jafari, M. K., F. Pellet, M. Boulon, K. Amini Hosseini : Experimental study of mechanical behaviour of rock joints under cyclic loading, *Rock Mechanics and Rock Engineering*, Vol. 37 (1), pp. 3-23, 2004.
- King, M. S., Pobran, V. S., and McConnell, B. V.,: Acoustic borehole logging system, Proceedings 9th Canadian Rock Mechanics Symposium, Montreal, 1975.
- Kulhawy, F.H.: Stress deformation properties of rock and rock discontinuities, *Engineering Geology*, Vol.9, pp. 327-350, 1975.
- Miki, S., Sasaki T., Ohnishi, Y., Nishiyama, S.: Applications of Manifold method to geotechnical problems involving excavations, Eighth International Conference on the Analysis of Discontinuous Deformation, pp. 275-280, 2007.
- Miki, S., T. Sasaki, T. Koyama S. Nishiyama, and Y.Ohnishi: Combined analysis of DDA and NMM (NMM-DDA), and its application to dynamic response models, Ninth International Conference on the Analysis of Discontinuous Deformation, pp.

255-263, 2009.

- Miki, S., T. Sasaki, T. Koyama S. Nishiyama, and Y. Ohnishi: Development of Coupled Discontinuous Deformation analysis and Numerical Manifold Method (NMM-DDA), International Journal of Computational Methods, Volume 7, Issue 1, pp. 131-150, 2010.
- Munjiza, A.,: The combined finite-discrete element method, Wiley, Chichester, 2004.
- 大西有三, 佐々木猛: FEM, DDA から
 Manifold Method, (社)システム総合研究所,
 第6回 Manifold 法実用化研究会, 1995.
- 大西有三,陳光斎:豊浜トンネル岩盤崩落の
 解析について,第9回 Manifold Method 実用
 化研究会,(社)システム総合研究所,pp.45 51,1997.
- 大西有三, 佐々木猛:マニフォールド法と不 連続体解析, 計算工学, 特集, メッシュス 法, Vol. 7, No. 1, pp. 11-15, 2002
- Ohnishi, Y., Nishiyama, S., Sasaki, T., Nakai, T.: The application of DDA to practical rock engineering problems: Issues and recent insight, Seventh International Conference on the Analysis of Discontinuous Deformation, pp. 277 -287, 2005.
- 大西有三, 佐々木猛, G.H.Shi: 不連続変形法 (DDA), 計算工学会編, 丸善, 2005.
- Ohnishi, Y., Nishiyama, S., Sasaki, T.: Development and application of discontinuous deformation analysis, 4th Asia Rock Mechanics Symposium, pp. 59-70, 2006.
- Puntel, E., Gabriella Bolzon, Victor E. Saouma: A fracture mechanics based model for joints under cyclic loading, *Juur. Engineering Mechanics*, *ASCE*, Vol. 123, Issue 11, pp. 1151-1159, 2006.
- 佐々木猛, 吉中龍之進, 永井文男: 有限要素

法による節理性岩盤の複合降伏モデルに関 する研究,土木学会論文集,No.505 /Ⅲ-29, pp.59~68,1994.

- 佐々木猛:岩盤解析の現状と課題,第 13 回岩 盤システム工学セミナー,(社)システム総合 研究所, pp. 57-86, 1996.
- Sasaki, T., Morikawa, S., Ishii, D., Ohnishi, Y.: Elastic - Plastic analysis of jointed rock models by Manifold method, Second International Congress on Analysis of Discontinuous Deformation, pp. 309-316, 1997.
- 佐々木猛:不連続体解析法の現状と課題,土 木学会 第 29 回岩盤力学に関するシンポジウ ム講演論文集, pp. 315-318, 1999.
- 佐々木猛:岩盤解析方法の進歩と今後の展望, 第 17 回岩盤システム工学セミナー,(社)シ ステム総合研究所, pp. 95-124, 2000.
- 佐々木猛,吉中龍之進:マニフオールド法及 び DDA による石積構造の検討,第7回計算 工学講演会論文集,pp.431-434,2002.
- Sasaki, T., et al.: Parameter studies of a plate-loading test of jointed rock mass by Multiple Yield Model, ISRM Symposium & 3rd Asia Rock Mechanics Symposium, Millpress, pp. 1153-1158, 2004.
- Sasaki, T., et al.: Earthquake response analysis of a rock falling model by Discontinuous Deformation Analysis, ISRM Symposium & 3rd Asia Rock Mechanics Symposium, Millpress, pp. 1267-1272, 2004.
- 佐々木猛,吉田淳,佐々木勝司,吉中龍之進, 岩田直樹: 複合降伏モデルによる不連続性 岩盤における平板載荷試験の解析的検討, 土木学会第 34 回岩盤力学に関するシンポジ ウム, pp. 189-194, 2005.
- 佐々木猛,吉田淳,佐々木勝司,吉中龍之進,

岩田直樹:節理の載荷-除荷変形特性と複合 降伏モデルによる掘削問題の検討,第40回 地盤工学研究発表会講演論文集,pp.1229-1230,2005.

- Sasaki, T., Hagiwara, I., Sasaki, K., Horikawa, S., Ohnishi, Y., Nishiyama, S., Yoshinaka, R.: Earthquake response analysis of a rock falling by Discontinuous Deformation Analysis, Seventh International Conference on the Analysis of Discontinuous Deformation, pp. 137-146, 2005.
- Sasaki, T., Hagiwara, I., Sasaki, K., Ohnishi, Y. and H. Ito: Fundamental studies for dynamic response of simple block structures by DDA, Eighth International Conference on the Analysis of Discontinuous Deformation, pp. 141-146, 2007.
- Sasaki, T., Ohnishi, Y., Yoshinaka, R.: Stability analysis of ancient block structures by using DDA and Manifold method, DDA Symposium in Hawaii Kona, pp. 83-96, 2008.
- Sasaki, T., I. Hagiwara, K. Sasaki, Yoshinaka, R., Y. Ohnishi, S. Nishiyama, T. Koyama: Stability analysis of ancient block structures by using DDA and Manifold method, Ninth International Conference on the Analysis of Discontinuous Deformation, pp. 265-272, 2009.
- Schneider, B.: Moyens nouveux de reonaissauce des massifs rocheux, Sup. To Annales de L'Inst. Tech. de Batiment et des Travaux Publics, Vol. 20, No. 235-236, pp. 1055-1093, 1967.
- Shi, G. H., and Goodman, R. E.: Two dimensional discontinuous fdeformation analysis, Int. J. Numer. Anal. Mechods Geomech., Vol. 9, pp.541-556, 1985.
- Shi, G. H.: Block system modeling by Discontinuous Deformation Analysis, Univ. of California,

Berkeley, Dept. of Civil Eng. August, 1989.

- Shi, G. H.: Manifold method of material analysis, Trans. 9th Army Conf. on Appl. Math. and Comp., Rep. No. 92-1. U.S. Army Res. Office, 1991.
- Shi, G. H.: Modeling rock joints and blocks by Manifold method, Proc. 33rd U.S. Symp. on Rock Mech., A.A. Balkema, pp. 639-648, 1992.
- 鈴木克幸,大坪英臣ほか:有限被覆法による3 次元ソリッドモデルの解析法,日本造船学 会論文集,第184号,pp.589-594,1998.
- 吉中龍之進,吉田淳,佐々木猛,佐々木勝 司:寸法効果を考慮した岩盤不連続面の設 計用物性値の設定,土木学会論文集 C, Vol. 62 No.2, pp. 457-470, 2006.
- Yoshinaka, R., Sasaki, T., Sasaki, K., Horikawa, S.: Consideration on stability and collapse at earthquake of soft rock slope based on an example, 11th ISRM Congress Lisbon, Portugal , pp. 1109-1112, 2007.
- Yoshinaka, R., Iwata, N., Sasaki, T., Sasaki, K., Yoshida, J.: Deformation behavior of discontinuous rock due to large scaled vertical excavation - Comparison between the prediction by numerical analysis and the measurement -, ISRM Symposium, SINOROCK2009, Hong-Kong, pp.547-551, 2009.